
 

 
 

 
 
 
 
 
 

Testing For Ryegrass And Potential Mutualistic Relationships In Arthropods From 
Longleaf Pine Savannas 

Senior Project 
 

In partial fulfillment of the requirements for 
The Esther G. Maynor Honors College 

University of North Carolina at Pembroke 
 

By 
 

Bailey Teale 
Biology 

12-May-21 
 
 
 
 

 
 
 
 
 
 

____________________________________________                    _____________________________________ 
Bailey Teale      Date 
Honors College Scholar 
 
____________________________________________                    _____________________________________ 
Lisa Kelly, Ph.D.      Date 
Faculty Mentor 
 
____________________________________________                    _____________________________________ 
Joshua Kalin Busman, Ph.D.    Date 
Senior Project Coordinator  



Teale 2 

Acknowledgements 

We wish to thank the Esther G. Maynor Honors College for funding and assistance on 

this project. 

We thank Dr. Kaitlin Campbell for her assistance on the project. 

We thank the Biology Department at the University of North Carolina at Pembroke for 

usage of their research lab. 

 

  



Teale 3 

Abstract 

 

Invasive species like the red imported fire ant (Solenopsis invicta) are a common threat to 

protected areas such as longleaf pine savannas. A substantial part of S. invicta’s diet 

appears to be the invasive Rigid Ryegrass (Lolium rigidum), which does not occur in the 

burn-managed longleaf pine savannas. Solenopsis invicta could be consuming L. rigidum 

through a mutualistic relationship with honeydew-producing insects. Honeydew-

producing insects could feed on L. rigidum in fields, then fly to the longleaf pine 

savannas where S. invicta tends them. Samples of S. invicta, honeydew insects and 

predatory arthropods went through DNA extraction, and commercial Sanger sequencing 

was performed on the amplified DNA (ITS2 gene region). The samples had been stored 

in 70% ethanol since 2017. Half of the S. invicta samples and all honeydew and predatory 

insect samples were washed in diluted bleach for external decontamination. The results 

from the honeydew and predatory insects were inconclusive, possibly due to damage 

from the bleach solution and cross contamination with the positive control. The S. invicta 

predominately matched with the Lolium spp., supporting previous findings. Next steps 

would be to collect and reattempt testing honeydew insects. Native ants also should be 

examined to determine whether they are feeding from the same plants as does S. invicta. 
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Testing For Ryegrass And Potential Mutualistic Relationships In Arthropods From 

Longleaf Pine Savannas 

 

Introduction 

 Part of managing our natural resources and protected ecosystems is monitoring 

and understanding the spread of invasive species. One prevalent invasive arthropod in the 

southern United States is the red imported fire ant (Solenopsis invicta). For an invasive 

species to become established, it must be able to access resources to grow. Solenopsis 

invicta is an omnivorous species whose larvae primarly digest animal tissues while the 

adult workers subsist on a liquid diet (Helms and Vinson 2008).  

One source for these liquids is from a mutualisitic relationship with honeydew 

producing insects from the order Hemiptera. Solenopsis invicta will tend these insects, 

sheltering them while gathering honeydew (Helms and Vinson 2002). Access to 

honeydew insects as well as plants and insect prey can stimulate colony growth (Helms 

and Vinson 2008). Mutualistic relationships between the invasive S. invicta and invasive 

hemiptera have been observed (Helms et al. 2011). The invasive hemiptera’s populations 

are assisted through care by S. invicta. Often these hemiptera have a preference for 

certain host plants, which are sometimes also invasive. Notably, these mutualistic 

relationships have occurred between species whose native ranges do not overlap (Helms 

and Vinson 2002). 

Solenopsis invicta has effectively colonized protected longleaf pine savanna 

habitats (L. Kelly, unpublished data). To examine the effect these invasive ants are 

having on the ecosystem, it is important to understand what they are eating. To determine 

the digested plant material in S. invicta, Sanger sequencing (also known as “chain 
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termination method”) was used. Sanger sequencing detects the most abundant DNA using 

a single DNA template. This method may not be as inclusive as next-generation 

sequencing, which uses several DNA templates. Next-generation sequencing, however, is 

more expensive than Sanger sequencing and requires bioinformatics expertise. Previous 

studies, using Sanger sequencing of DNA extracted from whole bodies of S. invicta has 

revealed that ryegrass (specifically Lolium rigidum and L. multiflorum) is a major 

component of their diet (Kelly et al. 2021). Lolium rigidum and L. multiflorum are 

nonnative species, not found in longleaf pine savannas that are managed using prescribed 

fires. A possible explanation is that honeydew insects are feeding on ryegrass outside of 

the savannas then enter the savannas, and the ryegrass DNA found in fire ants originates 

from the honeydew they consume. 

Methods 

 Specimens had been collected in 2017 via pitfall traps filled with propylene 

glycol. The samples were stored in 70% ethanol. Non-ant arthropods were sorted based 

upon whether the athropods produced honeydew or were predatory. Honeydew insects 

include sapsuckers and aphids. The “Honeydew” group was assigned for insects that 

were not classified further than that they were honeydew-producing. The specimens were 

from protected, longleaf pine savannas in the Green Swamp Preserve, Myrtle Head 

Savanna and Juniper Creek Game Land in Brunswick County, North Carolina. Fourteen 

samples of Solenopsis invicta (Red Imported Fire Ant) were selected, two of which were 

hand-collected samples. Two more samples from S. invicta colonies collected from the 

Green Swamp, that had previously tested positively for Lolium rigidum, were added. 

Seven samples of non-ant arthropods were selected for study.  
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 Eight of the S. invicta samples were decontaminated in 1 mL of 3% bleach 

solution based upon a previous study (Greenstone et al. 2012). Another eight S. invicta 

samples were rinsed in 1 mL of distilled deionized water. The samples were rotated end 

over end for 40 minutes twice, with a break to replace the liquid in each sample with 

fresh liquid, while kept at 4°C. All bleached samples were rinsed three times with cold 

distilled deionized water to remove the bleach and other contaminants. Any remaining 

liquid was removed using pipette tips, and the samples were stored at -20°C. 

Fire Ant DNA Extraction and Amplification  

 The DNA from the ant samples was extracted using lysis buffer and 

phenol/chloroform/isoamyl alcohol (PCI, Tris–HCl-saturated, pH 8) 

(Valles and Porter 2003). We added 150 µL of lysis buffer (50mM Tris-HCI pH 8; 4% 

SDS, 5% BME) to the samples (whole ants). Samples were ground using sterile 

micropestles for about 30 seconds. We added 200 µL of PCI (warmed to room 

temperature) to the samples and inverted five times. Samples were centrifuged for five 

minutes at room temperature and 13,000 rpm.  The supernatant was removed, transferred 

to sterile 0.5-mL microcentrifuge tubes, and recentrifuged.  We removed 50 µL of the 

supernatant from each tube and pipetted it into a fresh 1.5 mL centrifuge tube. We added 

900 µL of room temperature isopropanol to the samples and inverted five times before 

centrifuging the samples for five minutes at 13,000 rpm. We removed the isopropanol, 

added 500 µL of 70% ethanol and centrifuged for five minutes at 13,000 rpm. We 

pipetted out all liquid from the tubes, avoiding the bottom pellet of nucleic acid. We 

rehydrated the pellets in 50 µL of nuclease free water, mixing it by vortex and stored the 

samples at -20°C.  
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 The DNA extract was amplified using the polyamerase chain reaction (PCR) 

temperature protocol for UniPlant primers, which amplify minibarcodes for the ITS2 gene 

region (Moorhouse-Gann et al. 2018). UniPlant primers were used to amplify short 

stretches of DNA and were applicable for amplifying DNA that has undergone some 

digestion. At this point we added two positive controls of plant DNA (Hypericum 

hypericoides), which had been sampled in 2019. We made 25-µL reactions of PCR 

master mix using InvitrogenTM PlatinumTM Hot Start 2X Master Mix, prepared according 

manufacturer’s instructions, except 0.5 µL of bovine serum albumin (BSA) (purified 

100x 20mg/mL; BioLabs) replaced an equal volume of nuclease-free water, and DNA 

UniPlant primers (forward and reverse) had concentrations of 100 µM. We added 21 µL 

of PCR master mix and 4 µL of each DNA extract to sterile thermocycler tubes. We 

mixed the tubes by briefly vortexing and centrifuging. A drop of PCR-grade mineral oil 

was added to each tube, for the thermocycler (PTC 100 Programmable Thermal 

Controller) used did not have a heated lid. The conditions for the PCR were initial 

denaturation at 95°C for 15 min; 40 cycles of 95°C for 30 s, 56°C for 30 s, 72°C for 1 

min; final extension of 72°C for 10 min. We transferred 20 µL of the PCR product from 

the bottom of each tube to a sterile 0.5 mL centrifuge tube. The products were then stored 

at -20°C. 

 Gel electrophoresis was run to determine if PCR products had any plant DNA 

bands. We visualized the bands on 1.5% agarose gels that contained 10 µL SYBR® Safe 

DNA gel stain per  50 mL of cooling agar. Gels were run at 120 V for about 45 minutes. 

Gels were removed and digitally photographed. 

Non-ant Arthropod DNA Extraction and Amplification  
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 Procedures for the predatory and honeydew insects samples were similar to the 

procedures used for the S. invicta samples. These samples were decontaminated for one 

40 minute cycle in 3% bleach (Greenstone et al. 2012). Degradation was observed so a 

second wash in bleach solution was not attempted. Samples were stored at -20°C. The 

DNA was extracted using the same prodecure used for the S. invicta samples (Valles and 

Porter 2003). These samples were not ground, but there were no other deviations from the 

protocol. The DNA was amplified along side a positive control (PCR temperature 

protocol for UniPlant primers). We checked for bands of DNA using gel electrophoresis. 

The DNA concentration in the non-ant arthropod samples was measured by way of 

NanoDrop to determine whether there was enough DNA to warrant preparation for 

Sanger sequencing. All samples had similar concentrations (~ 500 ng/µL).  

Preparation for Commercial Sanger Sequencing 

 We prepared all PCR products (S. invicta, predatory arthropods, and honeydew 

insects) for commercial lab Sanger testing (Genewiz). The PCR products were thawed 

and 10 µL were transferred into sterile 0.5 mL PCR tubes with 4 µL of ExoSAP-ITTM 

(Thermofisher Scientific) to enzymatically purify the products. PCR tubes were vortexed 

and centrifuged before placed in a thermocycler (PTC 100 Programmable Thermal 

Controller). The tubes were heated 15 minutes at 37°C, and then heated for 15 minutes at 

80°C, and finally cooled at 4°C. We transferred 10 µL of each purified sample into strip 

0.2 mL PCR tubes. We diluted forward UniPlant primer to be 5 µM.  Samples were 

shipped overnight to Genewiz.   

BLAST Searches 
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Once Sanger sequencing results were returned, each of the sequences was 

analyzed using the Basic Local Alignment Search Tool [BLAST] from the National 

Institutes of Health. BLAST searched for taxa having nucleotide sequences that most 

closely matched the nucleotides from the Sanger sequences. If matches were not detected 

under the program option for “highly similar sequences” (megablast), we ran a second 

search using the option for “somewhat similar sequences” (blastn). BLAST scores below 

a maximum score of 200 were likely to be less reliable and such samples were noted.   

Results 

Solenopsis invicta 

Of the sixteen S. invicta samples, 43.75% matched with the ryegrass genus Lolium. The 

N/A group accounted for when a match could not be made. Matches to Quercus, 

Aloidendron, Bonnetia, and Juglans are likely less reliable as the maximum score was 

less than 200. One S. invicta sample matched with Juglans hindsii with a maximum score 

of 226. All matches to Lolium taxa had maximum scores well above 200.  

 

Non-ant Arthropods 
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The predatory and honeydew insect samples predominantly matched with the Hypericum 

genus. Some samples were sequenced twice, which resulted in 12 Sanger results for our 7 

predatory and honeydew insect samples. The N/A group accounted for whether a match 

could not be made or if the match was not for a plant genus. All but one match to the 

Hypericum taxa had a maximum score above 200, which would imply greater reliability. 

The majority (5 out of 9) of matches to Hypericum were above 400. Notably, the positive 

control samples (Hypericum hypericoides) all matched with max scores around 500. 

 

Discussion 

 Understanding how invasive species like Solenopsis invicta are thriving beyond 

their native range is an important step when considering management of protected 

habitats. After understanding the main food sources, the next step would be to understand 

how S. invicta is accessing them. It is particularly important to understand how S. invicta 

could be accessing ryegrass, which is not found at the study sites. Results from this 

current study cannot reject nor support the hypothesis that the ryegrass DNA found in fire 

ants originates from honeydew. 
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 The DNA from predatory and honeydew insects matched predominantly with the 

Hypericum genus. Some of the their DNA was resequenced due to the results being 

unclear or suspect. Notably, the majority (seven out of twelve sequences) matched with 

Hypericum hypericoides. Hypericum hypericoides is rather commonly found in longleaf 

pine savannas, and it cannot be ruled out that these non-ant arthopods fed on it. However, 

H. hypericoides was the species used for our positive plant DNA control. The non-ant 

arthropods were only washed once in diluted bleach rather than twice (as done for fire 

ants) due to the bleach solution causing loss of color and disintegration of the arthropods. 

Bleach can degrade DNA, which is why it was used for decontamination, so the 

consumed plant DNA was likely lost (Passi et al. 2012, Barthel et al. 2020). However, the 

NanoDrop results for the insect samples all had similar concentrations (~ 500 ng/µL). 

Such high similarity in concentrations is not usually seen across different samples. The 

chance of cross-contamination is therefore likely.  

Across the sixteen S. invicta samples, 43.75% were matched with the ryegrass 

genus Lolium. This would support the results from previous DNA sequencing from S. 

invicta colonies in the study areas. Viable plant DNA could be found in the majority of 

these preserved specimens, despite initial collection in propylene glycol and permanent 

storage in ethanol. Only one of the samples lacked a BLAST match, and that sample had 

little liquid after the PCR process. Technical error, such as not adding master mix, could 

account for the lack of PCR product. This may also explain why one of the S. invicta 

samples matched with H. hypercoides, as both of these samples could not have gel 

electrophoresis run due to insufficient liquid. Our study information is important for any 

future testing based upon preserved specimens, and our study has evidence on the 
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integrity of the DNA within S. invicta after being preserved in 70% ethanol for about four 

years.   

The next steps could be repeating the study after more honeydew insects have 

been sampled. Surface decontamination could potentially affect consumed plant DNA 

(Barthel et al. 2020). This does not seem to be an issue with the ant samples, but the 

difference in toughness of the exoskeletons between arthropods should be considered. 

The deterioration of the non-ant arthropods after a bleach wash would suggest that they 

may have softer exoskeletons than S. invicta. Another future step would be to examine 

the native ants for ingested plant DNA. Solenopsis invicta could be inhibiting the success 

of native ants by excluding access to resources such as honeydew insects (Wilder et al. 

2013). Examining the ingested plant DNA in native ants found in these longleaf pine 

savannas can show whether the native ants are consuming the same plants as does S. 

invicta. This could indicate whether competition is present and give further incentive to 

do research into more targeted management practices.   
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